By Topic

Performance Analysis of a Spectrally Phase-Encoded Optical Code Division Multiple Access Packet Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khaleghi, S. ; Ming Hsieh Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Khaleghi, S. ; Jamshidi, K.

We analyze the performance of a spectrally phase-encoded optical code division multiple access slotted packet network based on a simple protocol. The steady-state throughput and average packet delay are derived as two measures to assess the performance of the network. First, only multiple access interference is considered and other sources of noise are neglected. In this context, comparing different systems with the fixed bit rate and chip duration leads us to conclude that increasing the code length improves the performance of networks with small average activity; but in highly active networks, decreasing the code length results in a significant improvement in the throughput and average packet delay. Next, Gaussian approximation is used in our performance analysis to consider both shot noise and thermal noise as well as multiple access interference. The packet success probability is derived as a function of transmitted power. It is shown that in a fixed bandwidth and with a fixed bit rate, increasing the code length can lead to better performance in high average powers. But, in the low-power regime, decreasing code length leads to better performance due to the lower level of activity.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:1 ,  Issue: 3 )