By Topic

Robust multi-class transductive learning with graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Liu ; Electrical Engineering Department, Columbia University, USA ; Shih-Fu Chang

Graph-based methods form a main category of semi-supervised learning, offering flexibility and easy implementation in many applications. However, the performance of these methods is often sensitive to the construction of a neighborhood graph, which is non-trivial for many real-world problems. In this paper, we propose a novel framework that builds on learning the graph given labeled and unlabeled data. The paper has two major contributions. Firstly, we use a nonparametric algorithm to learn the entire adjacency matrix of a symmetry-favored k-NN graph, assuming that the matrix is doubly stochastic. The nonparametric algorithm makes the constructed graph highly robust to noisy samples and capable of approximating underlying submanifolds or clusters. Secondly, to address multi-class semi-supervised classification, we formulate a constrained label propagation problem on the learned graph by incorporating class priors, leading to a simple closed-form solution. Experimental results on both synthetic and real-world datasets show that our approach is significantly better than the state-of-the-art graph-based semi-supervised learning algorithms in terms of accuracy and robustness.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009