By Topic

SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Duy-Nguyen Ta ; Georgia Inst. of Technol., Atlanta, GA, USA ; Wei-Chao Chen ; Gelfand, N. ; Pulli, K.

We present an efficient algorithm for continuous image recognition and feature descriptor tracking in video which operates by reducing the search space of possible interest points inside of the scale space image pyramid. Instead of performing tracking in 2D images, we search and match candidate features in local neighborhoods inside the 3D image pyramid without computing their feature descriptors. The candidates are further validated by fitting to a motion model. The resulting tracked interest points are more repeatable and resilient to noise, and descriptor computation becomes much more efficient because only those areas of the image pyramid that contain features are searched. We demonstrate our method on real-time object recognition and label augmentation running on a mobile device.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009