By Topic

Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chaudhry, R. ; Center for Imaging Sci., Johns Hopkins Univ., Baltimore, MD, USA ; Ravichandran, A. ; Hager, G. ; Vidal, R.

System theoretic approaches to action recognition model the dynamics of a scene with linear dynamical systems (LDSs) and perform classification using metrics on the space of LDSs, e.g. Binet-Cauchy kernels. However, such approaches are only applicable to time series data living in a Euclidean space, e.g. joint trajectories extracted from motion capture data or feature point trajectories extracted from video. Much of the success of recent object recognition techniques relies on the use of more complex feature descriptors, such as SIFT descriptors or HOG descriptors, which are essentially histograms. Since histograms live in a non-Euclidean space, we can no longer model their temporal evolution with LDSs, nor can we classify them using a metric for LDSs. In this paper, we propose to represent each frame of a video using a histogram of oriented optical flow (HOOF) and to recognize human actions by classifying HOOF time-series. For this purpose, we propose a generalization of the Binet-Cauchy kernels to nonlinear dynamical systems (NLDS) whose output lives in a non-Euclidean space, e.g. the space of histograms. This can be achieved by using kernels defined on the original non-Euclidean space, leading to a well-defined metric for NLDSs. We use these kernels for the classification of actions in video sequences using (HOOF) as the output of the NLDS. We evaluate our approach to recognition of human actions in several scenarios and achieve encouraging results.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009