By Topic

Learning semantic scene models by object classification and trajectory clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tianzhu Zhang ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Hanqing Lu ; Li, S.Z.

Activity analysis is a basic task in video surveillance and has become an active research area. However, due to the diversity of moving objects category and their motion patterns, developing robust semantic scene models for activity analysis remains a challenging problem in traffic scenarios. This paper proposes a novel framework to learn semantic scene models. In this framework, the detected moving objects are first classified as pedestrians or vehicles via a co-trained classifier which takes advantage of the multiview information of objects. As a result, the framework can automatically learn motion patterns respectively for pedestrians and vehicles. Then, a graph is proposed to learn and cluster the motion patterns. To this end, trajectory is parameterized and the image is cut into multiple blocks which are taken as the nodes in the graph. Based on the parameters of trajectories, the primary motion patterns in each node (block) are extracted via Gaussian mixture model (GMM), and supplied to this graph. The graph cut algorithm is finally employed to group the motion patterns together, and trajectories are clustered to learn semantic scene models. Experimental results and applications to real world scenes show the validity of our proposed method.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009