By Topic

Recognising action as clouds of space-time interest points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matteo Bregonzio ; School of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS, United Kingdom ; Shaogang Gong ; Tao Xiang

Much of recent action recognition research is based on space-time interest points extracted from video using a Bag of Words (BOW) representation. It mainly relies on the discriminative power of individual local space-time descriptors, whilst ignoring potentially valuable information about the global spatio-temporal distribution of interest points. In this paper, we propose a novel action recognition approach which differs significantly from previous interest points based approaches in that only the global spatiotemporal distribution of the interest points are exploited. This is achieved through extracting holistic features from clouds of interest points accumulated over multiple temporal scales followed by automatic feature selection. Our approach avoids the non-trivial problems of selecting the optimal space-time descriptor, clustering algorithm for constructing a codebook, and selecting codebook size faced by previous interest points based methods. Our model is able to capture smooth motions, robust to view changes and occlusions at a low computation cost. Experiments using the KTH and WEIZMANN datasets demonstrate that our approach outperforms most existing methods.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009