By Topic

Boosted multi-task learning for face verification with applications to web image and video search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaogang Wang ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Cha Zhang ; Zhengyou Zhang

Face verification has many potential applications including filtering and ranking image/video search results on celebrities. Since these images/videos are taken under uncontrolled environments, the problem is very challenging due to dramatic lighting and pose variations, low resolutions, compression artifacts, etc. In addition, the available number of training images for each celebrity may be limited, hence learning individual classifiers for each person may cause overfitting. In this paper, we propose two ideas to meet the above challenges. First, we propose to use individual bins, instead of whole histograms, of Local Binary Patterns (LBP) as features for learning, which yields significant performance improvements and computation reduction in our experiments. Second, we present a novel Multi-Task Learning (MTL) framework, called Boosted MTL, for face verification with limited training data. It jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The effectiveness of Boosted MTL and LBP bin features is verified with a large number of celebrity images/videos from the web.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009