Cart (Loading....) | Create Account
Close category search window
 

Towards geographical referencing of monocular SLAM reconstruction using 3D city models: Application to real-time accurate vision-based localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lothe, P. ; LIST, CEA, Gif-sur-Yvette, France ; Bourgeois, S. ; Dekeyser, F. ; Royer, E.
more authors

In the past few years, lots of works were achieved on Simultaneous Localization and Mapping (SLAM). It is now possible to follow in real time the trajectory of a moving camera in an unknown environment. However, current SLAM methods are still prone to drift errors, which prevent their use in large-scale applications. In this paper, we propose a solution to reduce those errors a posteriori. Our solution is based on a postprocessing algorithm that exploits additional geometric constraints, relative to the environment, to correct both the reconstructed geometry and the camera trajectory. These geometric constraints are obtained through a coarse 3D modelisation of the environment, similar to those provided by GIS database. First, we propose an original articulated transformation model in order to roughly align the SLAM reconstruction with this 3D model through a non-rigid ICP step. Then, to refine the reconstruction, we introduce a new bundle adjustment cost function that includes, in a single term, the usual 3D point/ID observation consistency constraint as well as the geometric constraints provided by the 3D model. Results on large-scale synthetic and real sequences show that our method successfully improves SLAM reconstructions. Besides, experiments prove that the resulting reconstruction is accurate enough to be directly used for global relocalization applications.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.