By Topic

Moving cast shadow detection using physics-based features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia-Bin Huang ; Institute of Information Science, Academia Sinica, Taipei, Taiwan ; Chu-Song Chen

Cast shadows induced by moving objects often cause serious problems to many vision applications. We present in this paper an online statistical learning approach to model the background appearance variations under cast shadows. Based on the bi-illuminant (i.e. direct light sources and ambient illumination) dichromatic reflection model, we derive physics-based color features under the assumptions of constant ambient illumination and light sources with common spectral power distributions. We first use one Gaussian mixture model (GMM) to learn the color features, which are constant regardless of the background surfaces or illuminant colors in a scene. Then, we build up one pixel based GMM for each pixel to learn the local shadow features. To overcome the slow convergence rate in the conventional GMM learning, we update the pixel-based GMMs through confidence-rated learning. The proposed method can rapidly learn model parameters in an unsupervised way and adapt to illumination conditions or environment changes. Furthermore, we demonstrate that our method is robust to scenes with few foreground activities and videos captured at low or unsteady frame rates.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009