Cart (Loading....) | Create Account
Close category search window
 

Human motion synthesis from 3D video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Huang ; Centre for Vision Speech & Signal Processsing, Univ. of Surrey, Guildford, UK ; Hilton, A. ; Starck, J.

Multiple view 3D video reconstruction of actor performance captures a level-of-detail for body and clothing movement which is time-consuming to produce using existing animation tools. In this paper we present a framework for concatenative synthesis from multiple 3D video sequences according to user constraints on movement, position and timing. Multiple 3D video sequences of an actor performing different movements are automatically constructed into a surface motion graph which represents the possible transitions with similar shape and motion between sequences without unnatural movement artifacts. Shape similarity over an adaptive temporal window is used to identify transitions between 3D video sequences. Novel 3D video sequences are synthesized by finding the optimal path in the surface motion graph between user specified key-frames for control of movement, location and timing. The optimal path which satisfies the user constraints whilst minimizing the total transition cost between 3D video sequences is found using integer linear programming. Results demonstrate that this framework allows flexible production of novel 3D video sequences which preserve the detailed dynamics of the captured movement for an actress with loose clothing and long hair without visible artifacts.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.