Cart (Loading....) | Create Account
Close category search window

Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junseok Kwon ; Dept. of EECS, Seoul Nat. Univ., Seoul, South Korea ; Kyoung Mu Lee

We propose a novel tracking algorithm for the target of which geometric appearance changes drastically over time. To track it, we present a local patch-based appearance model and provide an efficient scheme to evolve the topology between local patches by on-line update. In the process of on-line update, the robustness of each patch in the model is estimated by a new method of measurement which analyzes the landscape of local mode of the patch. This patch can be moved, deleted or newly added, which gives more flexibility to the model. Additionally, we introduce the Basin Hopping Monte Carlo (BHMC) sampling method to our tracking problem to reduce the computational complexity and deal with the problem of getting trapped in local minima. The BHMC method makes it possible for our appearance model to consist of enough numbers of patches. Since BHMC uses the same local optimizer that is used in the appearance modeling, it can be efficiently integrated into our tracking framework. Experimental results show that our approach tracks the object whose geometric appearance is drastically changing, accurately and robustly.

Published in:

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on

Date of Conference:

20-25 June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.