By Topic

Secrecy generation for multiple input multiple output channel models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Imre Csiszar ; A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, H-1364, Budapest, Hungary ; Prakash Narayan

Shannon theoretic secret key generation by several parties is considered for models in which a secure noisy channel with multiple input and output terminals and a public noiseless channel of unlimited capacity are available for accomplishing this goal. The secret key is generated for a set A of terminals of the noisy channel, with the remaining terminals (if any) cooperating in this task through their public communication. Single-letter lower and upper bounds for secrecy capacities are obtained when secrecy is required from an eavesdropper that observes only the public communication and perhaps also a set of terminals disjoint from A. These bounds coincide in special cases, and the lower bounds are not tight in general. We also consider models in which different sets of terminals share multiple keys, one for terminals in each set with secrecy required from the eavesdropper as well as the remaining terminals in the other sets. Partial results include showing links among the associated secrecy capacity region for multiple keys, the transmission capacity region of the multiple access channel defined by the secure noisy channel, and achievable rates for a single secret key for all the terminals.

Published in:

2009 IEEE International Symposium on Information Theory

Date of Conference:

June 28 2009-July 3 2009