Cart (Loading....) | Create Account
Close category search window

Achievable rate and optimal physical layer rate allocation in interference-free wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Cui ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Tracey Ho ; Kliewer, Jorg

We analyze the achievable rate in interference free wireless networks with physical layer fading channels and orthogonal multiple access. As a starting point, the point-to-point channel is considered. We find the optimal physical and network layer rate trade-off which maximizes the achievable overall rate for both a fixed rate transmission scheme and an improved scheme based on multiple virtual users and superposition coding. These initial results are extended to the network setting, where, based on a cut-set formulation, the achievable rate at each node and its upper bound are derived. We propose a distributed optimization algorithm which allows to jointly determine the maximum achievable rate, the optimal physical layer rates on each network link, and an opportunistic back-pressure-type routing strategy on the network layer. This inherently justifies the layered architecture in existing wireless networks. Finally, we show that the proposed layered optimization approach can achieve almost all of the ergodic network capacity in high SNR.

Published in:

Information Theory, 2009. ISIT 2009. IEEE International Symposium on

Date of Conference:

June 28 2009-July 3 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.