By Topic

Binary erasure multiple descriptions: Worst-case distortion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ebad Ahmed ; School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA ; Aaron B. Wagner

We consider a binary erasure version of the n-channel multiple descriptions problem with no excess rate and no distortion for every k out of n descriptions, i.e., any subset of k messages has a total rate of one and allows for perfect reconstruction of the source. Using a worst-case distortion criterion, we present an explicit coding scheme based on Reed-Solomon codes and, for any n and k, characterize its achievable distortion region when m < k messages are received at the decoder. We prove that this scheme is Pareto optimal in the achievable distortions for all n and k for any number of received messages at the decoder, and is optimal for all n and k when a single message is received. We also provide optimality results for a certain range of values of n and k.

Published in:

2009 IEEE International Symposium on Information Theory

Date of Conference:

June 28 2009-July 3 2009