By Topic

Performance bounds on compressed sensing with Poisson noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Willett, R.M. ; Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Raginsky, M.

This paper describes performance bounds for compressed sensing in the presence of Poisson noise when the underlying signal, a vector of Poisson intensities, is sparse or compressible (admits a sparse approximation). The signal-independent and bounded noise models used in the literature to analyze the performance of compressed sensing do not accurately model the effects of Poisson noise. However, Poisson noise is an appropriate noise model for a variety of applications, including low-light imaging, where sensing hardware is large or expensive, and limiting the number of measurements collected is important. In this paper, we describe how a feasible positivity-preserving sensing matrix can be constructed, and then analyze the performance of a compressed sensing reconstruction approach for Poisson data that minimizes an objective function consisting of a negative Poisson log likelihood term and a penalty term which could be used as a measure of signal sparsity.

Published in:

Information Theory, 2009. ISIT 2009. IEEE International Symposium on

Date of Conference:

June 28 2009-July 3 2009