Cart (Loading....) | Create Account
Close category search window
 

Study on Instability Phenomena in CdTe Diode-Like Detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Farella, I. ; Unit of Lecce, CNR/IMM, Lecce, Italy ; Montagna, G. ; Mancini, A.M. ; Cola, A.

Diode-like In/CdTe/Pt detectors are widely used thanks to their excellent spectroscopic performance. However, when operated at room temperature they are not stable, and their performance degrades with time. The aim of this paper is to investigate in detail the physical mechanisms underlying this effect, by studying the evolution of the space charge inside the detector. Our approach makes use of the Pockels effect, by looking at the evolution of the electric field distribution inside the detector at different temperatures. The results show that a negative space charge accumulation occurs at the anode and that the process is thermally activated. The effect is attributed to a midgap acceptor which, under reverse bias, increases its ionization because of hole detrapping. Moreover, we compare the results with those obtained on stable detectors realized from nominally same crystals but having ldquostandard,rdquo i.e., not rectifying contacts. Consistently with the detection performance stability of this kind of detectors, the electric field is relatively stable. Furthermore, it decreases from cathode and it shows peculiar features which will be discussed in conjunction with charge transport properties.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.