By Topic

A Self-Checking Scheme to Mitigate Single Event Upset Effects in SRAM-Based FPAAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tiago R. Balen ; Centro Univ. Lasalle-UNILASALLE, Canoas, Brazil ; Franco Leite ; Fernanda Lima Kastensmidt ; Marcelo Lubaszewski

In this work the problem of Single Event Upset (SEU) is considered in a recent analog technology: The Field Programmable Analog Arrays (FPAAs). Some FPAA models are based on SRAM memory cells to implement the user programmability, which makes this kind of device vulnerable to SEU when employed in applications susceptible to the incidence of radiation. In the former part of this work some fault injection experiments are made in order to investigate the effects of SEU in the SRAM blocks of a commercial FPAA. For this purpose, single bit inversions are injected in the FPAA programming bitstream, when an oscillator module is programmed. In a second moment, a self-checking scheme using the studied FPAA is proposed. This scheme, which is built from the FPAA programming resources, is able to restore the original programming data if an error is detected. Fault injection is also performed to investigate the reliability of the proposed scheme when the bitstream section which controls the checker blocks is corrupted due to a SEU.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 4 )