By Topic

Polycrystalline Mercuric Iodide Films on CMOS Readout Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

We have created high-resolution x-ray imaging devices using polycrystalline mercuric iodide (HgI2) films grown directly onto CMOS readout chips using a thermal vapor transport process. Images from prototype 400 times 400 pixel HgI2-coated CMOS readout chips are presented, where the pixel grid is 30 mum times 30 mum. The devices exhibited sensitivity of 6.2 muC/Rcm2 with corresponding dark current of ~2.7 nA/cm2, and a 80 mum FWHM planar image response to a 50 mum slit aperture. X-ray CT images demonstrate a point spread function sufficient to obtain a 50 mum spatial resolution in reconstructed CT images at a substantially reduced dose compared to phosphor-coated readouts. The use of CMOS technology allows for small pixels (30 mum), fast readout speeds (8 fps for a 3200 times 3200 pixel array), and future design flexibility due to the use of well-developed fabrication processes.

Published in:

IEEE Transactions on Nuclear Science  (Volume:56 ,  Issue: 4 )