By Topic

Minimum-Transmission Broadcast in Uncoordinated Duty-Cycled Wireless Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jue Hong ; Nanjing Univ., Nanjing, China ; Jiannong Cao ; Wenzhong Li ; Sanglu Lu
more authors

Broadcast is a fundamental operation of wireless ad hoc networks (WANETs) and has widely been studied over the past few decades. However, most existing broadcasting strategies assume nonsleeping wireless nodes and thus are not suitable for uncoordinated duty-cycled WANETs, in which each node periodically switches on and off to save energy. In this paper, we study the minimum-transmission broadcast problem in uncoordinated duty-cycled WANETs (MTB-UD problem) and prove its NP-hardness. We show that modifications of existing broadcast approaches can only provide a linear approximation ratio of O(n) (where n is the number of nodes in the network). We propose a novel set-cover-based approximation (SCA) scheme with both centralized and distributed approximation algorithms. The centralized SCA (CSCA) algorithm has a logarithmic approximation ratio of 3(ln ?? + 1) and time complexity of O(n 3) (?? is the maximum degree of the network). The distributed SCA (DSCA) algorithm has a constant approximation ratio of at most 20 while keeping both linear time and message complexities. We have conducted both theoretical analysis and simulations to evaluate the performance of the proposed algorithms. Results show that both the CSCA and DSCA algorithms outperform the modified versions of existing broadcast approaches by at least 50%.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:59 ,  Issue: 1 )