By Topic

Scenes vs. objects: A comparative study of two approaches to context based recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rabinovich, A. ; Google Inc., New York, CA, USA ; Belongie, S.

Contextual models play a very important role in the task of object recognition. Over the years, two kinds of contextual models have emerged: models with contextual inference based on the statistical summary of the scene (we will refer to these as scene based context models, or SBC), and models representing the context in terms of relationships among objects in the image (object based context, or OBC). In designing object recognition systems, it is necessary to understand the theoretical and practical properties of such approaches. This work provides an analysis of these models and evaluates two of their representatives using the LabelMe dataset. We demonstrate a considerable margin of improvement using the OBC style approach.

Published in:

Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on

Date of Conference:

20-25 June 2009