By Topic

Wavelet-Domain Medical Image Denoising Using Bivariate Laplacian Mixture Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hossein Rabbani ; Dept. of Biomed. Eng., Isfahan Univ. of Med. Sci., Isfahan, Iran ; Reza Nezafat ; Saeed Gazor*

In this paper, we proposed novel noise reduction algorithms that can be used to enhance image quality in various medical imaging modalities such as magnetic resonance and multidetector computed tomography. The noisy captured 3-D data are first transformed by discrete complex wavelet transform. Using a nonlinear function, we model the data as the sum of the clean data plus additive Gaussian or Rayleigh noise. We use a mixture of bivariate Laplacian probability density functions for the clean data in the transformed domain. The MAP and minimum mean-squared error (MMSE) estimators allow us to efficiently reduce the noise. The employed prior distribution is mixture and bivariate, and thus accurately characterizes the heavy-tail distribution of clean images and exploits the interscale properties of wavelets coefficients. In addition, we estimate the parameters of the model using local information; as a result, the proposed denoising algorithms are spatially adaptive, i.e., the intrascale dependency of wavelets is also well exploited in the enhancement process. The proposed approach results in significant noise reduction while the introduced distortions are not noticeable as a result of accurate statistical modeling. The obtained shrinkage functions have closed form, are simple in implementation, and efficiently enhances data. Our experiments on CT images show that among our derived shrinkage functions usually BiLapGausMAP produces images with higher peak SNR. However, BiLapGausMMSE is preferred especially for CT images, which have high SNRs. Furthermore, BiLapRayMAP yields better noise reduction performance for low SNR MR datasets such as high-resolution whole heart imaging while BiLapGauMAP results in better performance in MR data with higher intrinsic SNR such as functional cine data.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:56 ,  Issue: 12 )