By Topic

Solving EMI-Related Problems for Reliable High-Power Converters Design With Precomputed Electromagnetic Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blanchette, H.F. ; Dept. of Genie Electr., Ecole de Technol. Super. (ETS), Montreal, QC, Canada ; Al-Haddad, K.

Interactions between low-power control circuits such as DSP or field-programmable gate array (FPGA), and high-power switching components that generate high ??i/??t greatly decrease the reliability of power converters. Moreover, they increase substantially the product's time to market when introducing a new design. The analysis of these couplings is traditionally done by using the finite elements method, which requires high technical expertise for complex 3-D circuit geometries. To overcome this requirement, the authors propose an approach based on the use of a precomputed electromagnetic model (PEM) library, which includes several metallic conducting structures present in modern power converters. Transistor cases, as well as printed circuit board (PCB) copper traces, are included in this library. By using these library models, high-coupling areas with higher flux density can be quickly identified in the converter 3-D layout. This helps to develop a remedial strategy for avoiding higher flux density areas. The proposed approach is used to analyze the electromagnetic behavior of a bidirectional matrix converter cell. Experimental results are also presented to further demonstrate the viability of the new proposed approach.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 1 )