By Topic

A composite trust model and its application to collaborative distributed information fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ion Matei ; Institute for Systems Research and Department of Electrical and Computer Engineering, University of Maryland, College Park, USA ; John S. Baras ; Tao Jiang

We consider the distributed state estimation of a linear dynamic system, observed by various sensors, as a problem in information fusion. We introduce a novel model of trust, using weights on the graph links and nodes that represent the sensor network. These weights can represent several interpretations of trustworthiness in sensor networks. We describe two algorithms that integrate distributed Kalman filtering with these trust weights. We consider two interpretations of these trust weights as information accuracy and reliability. We show that by appropriate use of these weights the distributed estimation algorithm avoids using information from untrusted sensors. Simulation experiments further demonstrate the behavior of these algorithms.

Published in:

Information Fusion, 2009. FUSION '09. 12th International Conference on

Date of Conference:

6-9 July 2009