By Topic

A state estimation method for multiple model systems using belief function theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nassreddine, G. ; HEUDIASYC, Univ. de Technol. de Compiegne - France, Compiegne, France ; Abdallah, F. ; Denoeux, T.

Multiple model methods have been generally considered as the mainstream approach for estimating the state of dynamic systems under motion model uncertainty. In this paper, a multiple model method based on belief function theory is proposed. This method handles the case of systems with an unknown and variant motion model. First, a set of candidate models is selected and an associated Dempster-Shafer mass function is computed based on the measurement likelihood of possible motion models. The estimated state of the system is then derived by computing the expectation with respect to the pignistic probability. In order to validate our work, we applied the proposed method to a vehicle localization problem. The comparison with other methods demonstrates the effectiveness of the proposed method.

Published in:

Information Fusion, 2009. FUSION '09. 12th International Conference on

Date of Conference:

6-9 July 2009