By Topic

A Kernel Fuzzy Clustering Algorithm with Spatial Constraint Based on Improved Expectation Maximization for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuchao Li ; Coll. of Inf. Sci. & Media, Jinggangsha Univ., Jian, China ; Suxuan Bian

In this paper, an unsupervised image segmentation algorithm is proposed, which combines spatial constraints with a kernel fuzzy c-means (KFCM) clustering algorithm. Conventional KFCM clustering segmentation algorithm does not incorporate the spatial context information of image, which makes it sensitive to the noise and intensity variations. In order to overcome the shortcomings, the contents of image is characterized by Gaussian mixture model, and the parameters of model are estimated by modified expectation maximization (EM) algorithm, which overcomes the classical EM algorithm drawbacks that easily trap in local maxima and be susceptible to initial value. According to the maximum a posterior theorem, we can get the pixel maximum posterior probability. We redefine the objective function of the KFCM algorithm which incorporates the pixel maximum posteriori probability, by minimizing the fuzzy objective function, the fuzzy segmentation algorithm is derived. The experimental results on a synthetic image and a real magnetic resonance image show that the proposed algorithm is more effective than the conventional FCM algorithm without local spatial constraints.

Published in:

2009 International Conference on Measuring Technology and Mechatronics Automation  (Volume:2 )

Date of Conference:

11-12 April 2009