By Topic

Localizing and recognizing action unit using position information of local feature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yan Song ; Lab. of Adv. Comput. Res., Chinese Acad. of Sci., Beijing, China ; Shouxun Lin ; Yongdong Zhang ; Lin Pang
more authors

Action recognition has attracted much attention for human behavior analysis in recent years. Local spatial-temporal (ST) features are widely adopted in many works. However, most existing works which represent action video by histogram of ST words fail to have a deep insight into a fine structure of actions because of the local nature of these features. In this paper, we propose a novel method to simultaneously localize and recognize action units (AU) by regarding them as 3D (x,y,t) objects. Firstly, we record all of the local ST features in a codebook with the information of action class labels and relative positions to the respective AU centers. This simulates the probability distribution of class label and relative position in a non-parameter manner. When a novel video comes, we match its ST features to the codebook entries and cast votes for positions of its AU centers. And we utilize the localization result to recognize these AUs. The presented experiments on a public dataset demonstrate that our method performs well.

Published in:

Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on

Date of Conference:

June 28 2009-July 3 2009