Cart (Loading....) | Create Account
Close category search window
 

Multi-dimensional matched filter identification technique for channel equalization deployed in spatial diversity receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Coskun, A. ; Appl. DSP & VLSI Res. Group, Univ. of Westminster, London, UK ; Kale, I.

This paper proposes a multi-dimensional matched filtering technique for spatial diversity receivers. The coefficients of the multi-dimensional matched filter are identified by making use of an adaptive filter, the update of which doesn't require the transmission of any training symbols within the transmitted data stream. Therefore the use of the proposed technique improves the data rate efficiency. Furthermore, it is well known that implementing multi-dimensional matched filtering is essential for equalization purposes to obtain the optimum error rate performance from spatial diversity receivers. For that reason the technique is designed not only to identify the unknown matched filter but also to simultaneously lead to the equalization of the channel too. In order to update the adaptive filter, the Constant Modulus Algorithm (CMA) is utilized, which is an implementation convenient algorithm. Therefore the proposed technique is not computationally complex in comparison to those identification algorithms proposed for spatial diversity receivers. Simulations are provided to present the equalization performance of the novel technique.

Published in:

Research in Microelectronics and Electronics, 2009. PRIME 2009. Ph.D.

Date of Conference:

12-17 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.