By Topic

Speech Enhancement using Adaptive Empirical Mode Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Davin Chatlani ; Centre for Excellence in Signal and Image Processing, University of Strathclyde, Glasgow, UK ; John J. Soraghan

Speech enhancement is performed in a wide and varied range of instruments and systems. In this paper, a novel approach to speech enhancement using adaptive empirical mode decomposition (SEAEMD) is presented. Spectral analysis of non-stationary signals can be performed by employing techniques such as the STFT and the Wavelet transform (WT), which use predefined basis functions. Empirical mode decomposition (EMD) performs very well in such environments. EMD decomposes a signal into a finite number of data-adaptive basis functions, called intrinsic mode functions (IMFs). The new SEAEMD system incorporates this multi-resolution approach with adaptive noise cancellation (ANC) for effective speech enhancement on an IMF level, in stationary and non-stationary noise environments. A comparative performance study is included that compares the competitive method of conventional ANC to the robust SEAEMD system. The results demonstrate that the new system achieves significantly improved speech quality with a lower level of residual noise.

Published in:

2009 16th International Conference on Digital Signal Processing

Date of Conference:

5-7 July 2009