By Topic

A new approach to reduced-rank DOA estimation based on joint iterative subspace optimization and grid search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, L. ; Dept. of Electron., Univ. of York, York, UK ; de Lamare, R.C.

In this paper, we propose a novel reduced-rank algorithm for direction of arrival (DOA) estimation based on the minimum variance (MV) power spectral evaluation. It is suitable to DOA estimation with large arrays and can be applied to arbitrary array geometries. The proposed DOA estimation algorithm is formulated as a joint optimization of a subspace decomposition matrix and an auxiliary reduced-rank parameter vector with respect to the MV, and a grid search. A constrained least squares method is employed to solve this joint optimization problem for the output power over the grid. The proposed algorithm is indicated for problems of large number of users' direction finding with or without exact information of the number of sources, and does not require the singular value decomposition (SVD). The spatial smoothing (SS) technique is also employed in the proposed algorithm for dealing with the correlated sources problem. Simulations are conducted with comparisons against existent algorithms to show the improved performance of the proposed algorithm in different scenarios.

Published in:

Digital Signal Processing, 2009 16th International Conference on

Date of Conference:

5-7 July 2009