By Topic

A robust ranging scheme for OFDMA-based networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Morelli, M. ; Dept. of Inf. Eng., Univ. of Pisa, Pisa, Italy ; Sanguinetti, L. ; Poor, H.V.

Uplink synchronization in orthogonal frequency division multiple-access (OFDMA) systems is a challenging task. In IEEE 802.16-based networks, users that intend to establish a communication link with the base station must go through a synchronization procedure called Initial Ranging (IR). Existing IR schemes aim at estimating the timing offsets and power levels of ranging subscriber stations (RSSs) without considering possible frequency misalignments between the received uplink signals and the base station local reference. In this work, a novel IR scheme is presented for OFDMA systems where carrier frequency offsets, timing errors and power levels are estimated for all RSSs in a decoupled fashion. The proposed frequency estimator is based on a subspace decomposition approach, while timing recovery is accomplished by measuring the phase shift between the usersiquest channel responses over adjacent subcarriers. Computer simulations are employed to assess the effectiveness of the proposed solution and to make comparisons with existing alternatives.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 8 )