By Topic

A General Photo-Electro-Thermal Theory for Light Emitting Diode (LED) Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Y. Hui ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Y. X. Qin

The photometric, electrical, and thermal features of LED systems are highly dependent on one another. By considering all these factors together, it is possible to optimize the design of LED systems. This paper presents a general theory that links the photometric, electrical, and thermal behaviors of an LED system together. The theory shows that the thermal design is an indispensable part of the electrical circuit design and will strongly influence the peak luminous output of LED systems. It can be used to explain why the optimal operating power, at which maximum luminous flux is generated, may not occur at the rated power of the LEDs. This theory can be used to determine the optimal operating point for an LED system so that the maximum luminous flux can be achieved for a given thermal design. The general theory has been verified favorably by experiments using high-brightness LEDs.

Published in:

IEEE Transactions on Power Electronics  (Volume:24 ,  Issue: 8 )