By Topic

Investigations of Subcritical Streamer Microwave Discharge in Reverse-Vortex Combustion Chamber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Konstantin V. Aleksandrov ; Moscow Radiotechnical Inst., Russian Acad. of Sci., Moscow, Russia ; Vladimir L. Bychkov ; Igor I. Esakov ; Lev P. Grachev
more authors

In this paper, we report on the experimental investigations of two innovative technologies combined in one device, namely, the application of an initiated streamer microwave (MW) discharge for ignition and flame control in a reverse-vortex combustion chamber, also known as a Tornado combustor. The pulsed subcritical streamer MW discharge (SSD) in a quasi-optical wave beam was experimentally investigated in the atmospheric-pressure model of a Tornado combustor with transparent dielectric walls. The possibility of a surface MW streamer discharge formation at new conditions, particularly on the dielectric walls of the cylindrical combustion chamber, has been confirmed. The mechanism of SSD realization, at which the discharge development takes place in a volume of the combustion chamber, has been proposed. It was shown that SSD could be applied for ignition of fuel/air mixtures in an axial area of the reverse-vortex combustion-chamber bottom plate, which is normally used for a fuel feeding.

Published in:

IEEE Transactions on Plasma Science  (Volume:37 ,  Issue: 12 )