By Topic

Robust Color Demosaicking With Adaptation to Varying Spectral Correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fan Zhang ; Inst. of Image Commun. & Inf. Process., Shanghai Jiao Tong Univ., Shanghai, China ; Xiaolin Wu ; Xiaokang Yang ; Wenjun Zhang
more authors

Almost all existing color demosaicking algorithms for digital cameras are designed on the assumption of high correlation between red, green, blue (or some other primary color) bands. They exploit spectral correlations between the primary color bands to interpolate the missing color samples, but in areas of no or weak spectral correlations, these algorithms are prone to large interpolation errors. Such demosaicking errors are visually objectionable because they tend to correlate with object boundaries and edges. This paper proposes a remedy to the above problem that has long been overlooked in the literature. The main contribution of this work is a hybrid demosaicking approach that supplements an existing color demosaicking algorithm by combining its results with those of adaptive intraband interpolation. This is formulated as an optimal data fusion problem, and two solutions are proposed: one is based on linear minimum mean-square estimation and the other based on support vector regression. Experimental results demonstrate that the new hybrid approach is more robust and eliminates the worst type of color artifacts of existing color demosaicking methods.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 12 )