Cart (Loading....) | Create Account
Close category search window
 

Modeling and Design of RF Amplifiers for Envelope Tracking WCDMA Base-Station Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jinseong Jeong ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Kimball, D.F. ; Myoungbo Kwak ; Chin Hsia
more authors

Wideband code division multiple access (WCDMA) base-station RF amplifiers using a variety of device technologies including GaN field-effect transistors (FETs), Si LDMOS, and GaAs high-voltage heterojunction bipolar transistors (HVHBTs) are modeled, optimized, and compared for use in wideband envelope tracking (ET) system. A quasi-static approach is employed to effectively model the supply-modulated RF amplifiers, and thus facilitate the design optimization process. A new design methodology for ET RF amplifiers is introduced including identification of optimum fundamental and harmonic terminations. The fundamental and harmonic impedances have been successfully optimized for various RF devices and good agreement has been achieved between the simulation and measurement results. Among the modeled and measured ET RF amplifiers, a GaAs HVHBT exhibits the best overall efficiency of 60% with an average output power of 33 W and a gain of 10 dB for a WCDMA signal with 3.84-MHz bandwidth and 7.7-dB peak-to-average power ratio, while meeting all linearity requirements of the WCDMA standard. Desirable device characteristics for optimum ET operation are also discussed.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.