By Topic

Rotor Voltage Dynamics in the Doubly Fed Induction Generator During Grid Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lima, F.K.A. ; COPPE, Fed. Univ. of Rio de Janeiro, Rio de Janeiro, Brazil ; Luna, A. ; Rodriguez, P. ; Watanabe, E.H.
more authors

This paper presents a new control strategy for the rotor-side converter (RSC) of wind turbines (WTs) based on doubly fed induction generators (DFIG) that intends to improve its low-voltage ride through capability. The main objective of this work is to design an algorithm that would enable the system to control the initial overcurrents that appear in the generator during voltage sags, which can damage the RSC, without tripping it. As a difference with classical solutions, based on the installation of crowbar circuits, this operation mode permits to keep the inverter connected to the generator, something that would permit the injection of power to the grid during the fault, as the new grid codes demand. A theoretical study of the dynamical behavior of the rotor voltage is also developed, in order to show that the voltage at the rotor terminals required for the control strategy implementation remains under controllable limits. In order to validate the proposed control system simulation, results have been collected using PSCAD/EMTDC and experimental tests have been carried out in a scaled prototype.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 1 )