By Topic

Start-Up and Dynamic Modeling of the Multilevel Modular Capacitor-Clamped Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faisal H. Khan ; Electrical and Computer Engineering Department, University of Utah, Salt Lake City, USA ; Leon M. Tolbert ; William E. Webb

This paper will present the analytical proof of concept of the multilevel modular capacitor-clamped converter (MMCCC). The quantitative analysis of the charge transfer mechanism among the capacitors of the MMCCC explains the start-up and steady-state voltage balancing. Once these capacitor voltages are found for different time intervals, the start-up and steady-state voltages at various nodes of the MMCCC can be obtained. This analysis provides the necessary proof that explains the stable operation of the converter when a load is connected to the low-voltage side of the circuit. In addition, the analysis also shows how the LV side of the converter is (1/N)th of the HV side excitation when the conversion ratio of the circuit is N. In addition to the analytical and simulation results, experimental results are included to support the analytical proof of concept.

Published in:

IEEE Transactions on Power Electronics  (Volume:25 ,  Issue: 2 )