By Topic

Channel Estimation Based on a Time-Domain Threshold for OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
You-Seok Lee ; Sch. of Electr. Eng., Pusan Nat. Univ., Busan, South Korea ; Hyun-Chool Shin ; Kim, H.-N.

Channel estimation for OFDM systems is usually carried out in frequency domain by the least-squares (LS) method using known pilot symbols. The LS estimator has a merit of low complexity but may suffer from noise because it does not consider any noise effect in obtaining its solution. To enhance the noise immunity of the LS estimator, we consider the estimation noise in time domain named discrete Fourier transform (DFT)-based channel estimation. Residual noise existing at the estimated channel coefficients in time domain could be reduced by reasonable selection of a threshold value. To achieve this, we propose a channel-estimation method based on a time-domain threshold which is a standard deviation of noise obtained by wavelet decomposition. Computer simulation shows that the estimation performance of the proposed method approaches to that of the known-channel case in terms of bit-error rates after the Viterbi decoder in overall SNRs.

Published in:

Broadcasting, IEEE Transactions on  (Volume:55 ,  Issue: 3 )