By Topic

An Adaptive Slope Compensation for the Single-Stage Inverter With Peak Current-Mode Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feng Tian ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Kasemsan, S. ; Batarseh, I.

This letter develops a mathematical model of the slope compensation for a single-stage inverter with peak current-mode control. The model proves that the single-stage inverter with peak current-mode control will be unconditionally stable only if a slope compensation equal or greater than half the slope rate of the inductor current downslope is applied. Thus, the slope compensation requirements for a conventional dc-dc converter and a single-stage inverter with peak current-mode control are the same. A simulation model has been developed to prove this mathematical model is valid. A frequency-domain analysis of the single-stage inverter shows that the unified slope compensation will degrade the loop gain at lower input voltages. An adaptive slope compensation is proposed to keep the loop gain of the single-stage inverter nearly constant at all the duty cycles. A practical design is also proposed.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 10 )