By Topic

L-Band Radar Estimation of Forest Attenuation for Active/Passive Soil Moisture Inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kurum, M. ; Dept. of Electr. & Comput. Eng., George Washington Univ., Washington, DC, USA ; Lang, R.H. ; O'Neill, P.E. ; Joseph, A.T.
more authors

In the radiometric sensing of soil moisture through a forest canopy, knowledge of canopy attenuation is required. Active sensors have the potential of providing this information since the backscatter signals are more sensitive to forest structure. In this paper, a new radar technique is presented for estimating canopy attenuation. The technique employs details found in a transient solution where the canopy (volume-scattering) and the tree-ground (double-interaction) effects appear at different times in the return signal. The influence that these effects have on the expected time-domain response of a forest stand is characterized through numerical simulations. A coherent forest scattering model, based on a Monte Carlo simulation, is developed to calculate the transient response from distributed scatterers over a rough surface. The forest transient-response model for linear copolarized cases is validated with the microwave deciduous tree data acquired by the Combined Radar/Radiometer (ComRAD) system. The attenuation algorithm is applicable when the forest height is sufficient to separate the components of the radar backscatter transient response. The frequency correlation functions of double-interaction and volume-scattering returns are normalized after being separated in the time domain. This ratio simply provides a physically based system of equations with reduced parameterizations for the forest canopy. Finally, the technique is used with ComRAD L-band stepped-frequency data to evaluate its performance under various physical conditions.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 9 )