By Topic

A Novel Pseudorandom Noise and Band Jammer Generator Using a Composite Sinusoidal Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saab, S.S. ; Dept. of Electr. & Comput. Eng., Lebanese American Univ., Byblos, Lebanon ; Hobeika, J.G. ; Ouaiss, I.E.

Communication applications are increasingly relying on spread-spectrum techniques requiring the use of different types of pseudorandom noise generators (PRNGs). Such generators typically produce periodic deterministic signals, with key attributes of PRNGs being: signals produced have long periods, a large number of weakly correlated signals is produced with compatible spectral properties, most of the signal power of generated signals is contained in the desired frequency band, and arbitrary band selectivity of produced signals. Random generators can also be used for band jamming, with key attributes for band jamming being: most of the signal power is contained in the desired frequency band, arbitrary band selectivity, and a considerably flat power spectral density within the selected band. In this paper, a novel PRNG approach is proposed that can be used in several applications, including spread-spectrum techniques, as well as in band jamming. The signals produced by the proposed generator are based on a linear combination of continuous-time composite sinusoidal functions. Numerical examples are included in order to illustrate the performance of the proposed generator.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 2 )