Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Comparison of diffusion length measurements from the flying spot technique and the photocarrier grating method in amorphous thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Vieira, M. ; FCT-UNL/UNINOVA, Monte da Caparica, Portugal ; Fantoni, A. ; Martins, R. ; Chu, V.
more authors

Using the Flying Spot Technique (FST) we have studied minority carrier transport parallel and perpendicular to the surface of amorphous silicon films (a-Si:H). To reduce slow transients due to charge redistribution in low resistivity regions during the measurement we have applied a strong homogeneously absorbed bias light. The defect density was estimated from CPM measurements. The steady-state photocarrier grating technique (SSPG) is a 1-dimensional approach. However, the modulation depth of the carrier profile is also dependent on film surface properties, like surface recombination velocity. Both methods yield comparable diffusion lengths when applied to a-Si:H

Published in:

Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on  (Volume:1 )

Date of Conference:

5-9 Dec 1994