Cart (Loading....) | Create Account
Close category search window
 

Implementing a Highly Parameterized Digital PIV System on Reconfigurable Hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bennis, A. ; Northeastern Univ., Boston, MA, USA ; Leeser, M. ; Tadmor, G.

This paper presents PARPIV the design and prototyping of a highly parameterized digital Particle Image Velocimetry (PIV) system implemented on reconfigurable hardware. Despite many improvements to PIV methods over the last twenty years, PIV post-processing remains a computationally intensive task. It becomes a serious bottleneck as camera acquisition rates reach 1000 frames per second. In this research, we aim to substantially speed up PIV processing by implementing it in reconfigurable hardware. Furthermore, this implementation is highly parameterized, supporting adaptation to a variety of setups and application domains. The circuit is parameterized by the dimensions of the captured images as well as the dimensions of the interrogation windows and sub-areas, pixel representation, board memory width, displacement and overlap. Through this work a parameterized library of different VHDL components was built. To the best of the authorspsila knowledge, this is the first highly parameterized PIV system implemented on reconfigurable hardware reported in the literature. For a typical PIV configuration with images of 512times512 pixels, 40times40 pixel interrogation windows and 32times32 pixel sub-areas, we achieved about 65 times speedup in hardware over a standard software implementation.

Published in:

Application-specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE International Conference on

Date of Conference:

7-9 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.