By Topic

The Multicell Processing Capacity of the Cellular MIMO Uplink Channel under Correlated Fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chatzinotas, S. ; Centre for Commun. Syst. Res., Univ. of Surrey, Guildford, UK ; Imran, M.A. ; Hoshyar, R.

In the information-theoretic literature, it has been widely shown that multicell processing is able to provide high capacity gains in the context of cellular systems and that the per-cell sum-rate capacity of multicell processing systems grows linearly with the number of Base Station (BS) receive antennas. However, the majority of results in this area has been produced assuming that the fading coefficients of the MIMO subchannels are totally uncorrelated. In this direction, this paper investigates the ergodic per-cell sum-rate capacity of the MIMO Cellular Multiple-Access Channel under correlated fading and multicell processing. More specifically, the current channel model considers Rayleigh fading, uniformly distributed User Terminals (UTs) over a planar cellular system and power-law path loss. Furthermore, both BSs and Uts are equipped with correlated multiple antennas, which are modelled according to the Kronecker model. The per-cell sum-rate capacity closed form is derived using a Free Probability approach and numerical results are produced by varying the cell density of the system, as well as the level of correlation.

Published in:

Communications, 2009. ICC '09. IEEE International Conference on

Date of Conference:

14-18 June 2009