Cart (Loading....) | Create Account
Close category search window

Scalable Video-On-Demand Streaming in Mobile Wireless Hybrid Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Do, T.T. ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Hua, K.A. ; Aved, A. ; Fuyu Liu
more authors

Video-on-demand service in wireless networks is one important step to achieving the goal of providing video services anywhere anytime. Typically, carrier mobile networks are used to deliver videos wirelessly. Since every video stream comes from the base station, regardless of what bandwidth sharing techniques are being utilized, the media stream system is still limited by the network capacity of the base station. The key to overcome the scalability issue is to exploit resources available to mobile clients in a peer-to-peer setting. We observe that it is common to have a carrier mobile network and a mobile peer-to-peer network co-existing in a wireless environment. A feature of such hybrid environment is that the former offers high availability assurance, while the latter presents an opportunistic use of resources available at mobile clients. Our proposed video-on-demand technique, PatchPeer, leverages this network characteristic to allow the video-on-demand system to scale beyond the bandwidth capacity of the server. Mobile clients in PatchPeer are no longer passive receivers, but also active senders of video streams to other mobile clients. Our extensive performance study shows that PatchPeer can accept more clients than the current state-of-the-art technique, while maintaining the same quality-of-service to clients.

Published in:

Communications, 2009. ICC '09. IEEE International Conference on

Date of Conference:

14-18 June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.