Cart (Loading....) | Create Account
Close category search window

A New Distributed Intrusion Detection Model Based on Immune Mobile Agent

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jing Xu ; Coll. of Inf. Eng., Yancheng Inst. of Technol., Yancheng, China ; Yongzhong Li

The development direction of intrusion detection system is intelligent and distributed in future. However, current distributed intrusion detection system mostly uses distributed component to collect data then sent to processing center. Data is analyzed in the processing center. These models have the following problems: bad real time capability, bottleneck, and single point of failure. In order to overcome these shortcomings of current intrusion detection techniques, a new distributed intrusion detection model based on mobile agent is proposed in this paper. Intelligent and mobile characteristics of the agent are used to make computing move to data. As mobile agent can only improve the structure of system and can not supply fundamental new detecting techniques, improved dynamic clonal selection algorithm and collaborative signal mechanism are adopted for reducing false positive rate and increasing detection rate in this paper. Finally, the proposed model and algorithm were simulated by KDDpsila99 datasets. Comparing with winning entry of KDDpsila99 classifier learning contest, the proposed model has low false positive rate and higher detection rate in both Dos and Probing attacks, and greatly higher detection rate in U2R attack. Robustness and dynamic adaptability of the system are validated.

Published in:

Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on  (Volume:2 )

Date of Conference:

18-19 July 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.