Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Computer-Aided Detection of Polyps in CT Colonography Using Logistic Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
van Ravesteijn, V.F. ; Quantitative Imaging Group, Delft Univ. of Technol., Delft, Netherlands ; van Wijk, C. ; Vos, F.M. ; Truyen, R.
more authors

We present a computer-aided detection (CAD) system for computed tomography colonography that orders the polyps according to clinical relevance. The CAD system consists of two steps: candidate detection and supervised classification. The characteristics of the detection step lead to specific choices for the classification system. The candidates are ordered by a linear logistic classifier (logistic regression) based on only three features: the protrusion of the colon wall, the mean internal intensity, and a feature to discard detections on the rectal enema tube. This classifier can cope with a small number of polyps available for training, a large imbalance between polyps and non-polyp candidates, a truncated feature space, unbalanced and unknown misclassification costs, and an exponential distribution with respect to candidate size in feature space. Our CAD system was evaluated with data sets from four different medical centers. For polyps larger than or equal to 6 mm we achieved sensitivities of respectively 95%, 85%, 85%, and 100% with 5, 4, 5, and 6 false positives per scan over 86, 48, 141, and 32 patients. A cross-center evaluation in which the system is trained and tested with data from different sources showed that the trained CAD system generalizes to data from different medical centers and with different patient preparations. This is essential to application in large-scale screening for colorectal polyps.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 1 )