By Topic

Shearlet-Based Deconvolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vishal M. Patel ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Glenn R. Easley ; Dennis M. Healy

In this paper, a new type of deconvolution algorithm is proposed that is based on estimating the image from a shearlet decomposition. Shearlets provide a multidirectional and multiscale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. Constructions such as curvelets and contourlets share similar properties, yet their implementations are significantly different from that of shearlets. Taking advantage of unique properties of a new M-channel implementation of the shearlet transform, we develop an algorithm that allows for the approximation inversion operator to be controlled on a multiscale and multidirectional basis. A key improvement over closely related approaches such as ForWaRD is the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation (GCV). Various tests show that this method can perform significantly better than many competitive deconvolution algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 12 )