Cart (Loading....) | Create Account
Close category search window
 

Comparison of the ASI Ice Concentration Algorithm With Landsat-7 ETM+ and SAR Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wiebe, H. ; Inst. of Environ. Phys., Univ. of Bremen, Bremen, Germany ; Heygster, G. ; Markus, T.

Continuous monitoring of sea ice and its changes is mainly done by passive microwave sensors on satellites. One frequently used technique of retrieving sea-ice concentrations is the Arctic Radiation and Turbulence Interaction STudy Sea Ice (ASI) algorithm, which uses the near-90-GHz channels, here those of the Advanced Microwave Scanning Radiometer-Earth Observing System to calculate sea-ice concentrations. The ASI ice concentrations are compared with ice concentrations derived from the following: 1) the multispectral imager Enhanced Thematic Mapper Plus operating on Landsat and 2) from Envisat and Radarsat SAR images. In this paper, we focus on marginal ice zones, as the ice concentrations in those regions are in general observed with higher errors. First-year ice (bias: -1%-0% and rms error: 1%-4%) and young ice (bias: -4%-0% and rms error: 3%-9%) are fairly well recognized with little underestimation of ASI ice concentrations with respect to Landsat ice concentrations. New ice is identified with less accuracy by the ASI algorithm (bias: -16%-9% and rms error: 18.3%-26.2%). Averaged over all ice types, the bias ranges between -8.4% and 4.5%, and the rms error ranges between 2.0% and 17.4%. Discrepancies mainly occur in polynya areas (underestimation by ASI) and along the ice edge (overestimation by ASI). The results of the ASI-SAR comparison yield contrasting results. ASI underestimates the ice concentrations near the ice edge but overestimates them in some interior areas (bias: -2.9%-2.5% and rms error: 16.9%-20.1%). The discrepancies between both comparisons may be due to the different interaction mechanisms of the different sensor types, particularly with the newly formed ice.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.