Cart (Loading....) | Create Account
Close category search window
 

Modeling and Analysis of Simultaneous Switching Noise Coupling for a CMOS Negative-Feedback Operational Amplifier in System-in-Package

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yujeong Shim ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Jongbae Park ; Jaemin Kim ; Eakhwan Song
more authors

A new hybrid modeling method is proposed for the chip-package co-modeling and co-analysis. This method is designed to investigate the simultaneous switching noise (SSN) coupling paths and effects on the dc output voltage offset of the operational amplifier (OpAmp). It combines an analytical model of the circuit with a power distributed network (PDN) and interconnection models at the chip and package substrate. In order to validate the proposed model, CMOS OpAmp was fabricated using TSMC 0.25 mum. Then the dc output offset voltage of the OpAmp was measured by sweeping the SSN frequency from 10 MHz up to 3 GHz. It was successfully demonstrated that the experimental results are consistent with the predictions generated using the proposed model. We also confirmed that the dc offset voltage is strongly dependent on the SSN frequency and the PDN impedance profile of the chip-package hierarchical PDN. It shows the necessity for the chip-package co-modeling and simulation of the system-in-package designs.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:51 ,  Issue: 3 )

Date of Publication:

Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.