Cart (Loading....) | Create Account
Close category search window
 

Amundsen Sea Bathymetry: The Benefits of Using Gravity Data for Bathymetric Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
McMillan, M. ; Centre for Polar Obs. & Modelling, Univ. of Edinburgh, Edinburgh, UK ; Shepherd, A. ; Vaughan, D.G. ; Laxon, S.
more authors

Bathymetric charts are essential for modeling oceanic processes, yet, in remote areas, direct measurements of seafloor depth are often scarce. It is possible to augment sparse depth soundings with dense satellite-derived gravity data to provide additional bathymetric detail in regions devoid of sounding data. We demonstrate this method by using marine gravity derived from the European Remote Sensing (ERS-1) satellite altimeter, combined with depth soundings, to form a bathymetric prediction of the Amundsen Sea, West Antarctica. We estimate the root mean square error of depth estimates at unsurveyed locations in our solution to be ~120 m. We use a Monte Carlo method to assess the value of gravity as a bathymetric predictor in sparsely surveyed regions by comparing our solution to predictions formed from depth soundings alone. When less than ~11% of 10-km grid cells contain depth soundings, inclusion of gravity data improves the depth accuracy of the solution by up to 17%, as compared to a minimum curvature surface interpolation of the depth soundings alone. When depth data are sparse, our gravity-derived prediction reveals additional short-wavelength bathymetric features, such as troughs on the continental shelf, which are not resolved by interpolations of the depth soundings alone.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 12 )

Date of Publication:

Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.